博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件
阅读量:5135 次
发布时间:2019-06-13

本文共 1148 字,大约阅读时间需要 3 分钟。

在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$

 

证明:

 

(1)  对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}},\\ \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &=\lm\sum_i\xi_i\eta_i\cdot \sum_k\xi_k\eta_k +\mu\sum_i\xi_i^2\cdot\sum_j\eta_j^2 +\mu\sum_i\eta_i\eta_i\cdot \sum_k\xi_k\eta_k\\ &=(\lm+\mu)({\bf \xi}\cdot{\bf\eta})^2+ \mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2.  \eea \eeex$$

 

(2)  $\la$: 若 $\lm+\mu\geq 0$, 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l\geq\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2; \eex$$ 若 $\lm+\mu<0$, 则 $$\beex \bea \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &\geq (\lm+\mu)\sex{|{\bf \xi}|\cdot|{\bf\eta}|}^2 +\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2\\ &=(\lm+2\mu) |{\bf \xi}|^2\cdot |{\bf\eta}|^2.  \eea \eeex$$

 

(3)  $\ra$: 取 $$\bex {\bf \xi}=(1,0,0)^T,\quad{\bf\eta}=(0,1,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l=\mu>0.  \eex$$ 取 $$\bex {\bf \xi}={\bf\eta}=(1,0,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l =\lm+2\mu>0.  \eex$$

转载于:https://www.cnblogs.com/zhangzujin/p/3675902.html

你可能感兴趣的文章
Vue_(组件通讯)子组件向父组件传值
查看>>
STM32单片机使用注意事项
查看>>
移动开发平台-应用之星app制作教程
查看>>
leetcode 459. 重复的子字符串(Repeated Substring Pattern)
查看>>
springboot No Identifier specified for entity的解决办法
查看>>
浅谈 unix, linux, ios, android 区别和联系
查看>>
51nod 1428 活动安排问题 (贪心+优先队列)
查看>>
latex for wordpress(一)
查看>>
如何在maven工程中加载oracle驱动
查看>>
Flask 系列之 SQLAlchemy
查看>>
aboutMe
查看>>
【Debug】IAR在线调试时报错,Warning: Stack pointer is setup to incorrect alignmentStack,芯片使用STM32F103ZET6...
查看>>
一句话说清分布式锁,进程锁,线程锁
查看>>
FastDFS使用
查看>>
服务器解析请求的基本原理
查看>>
[HDU3683 Gomoku]
查看>>
下一代操作系统与软件
查看>>
Python IO模型
查看>>
DataGridView的行的字体颜色变化
查看>>
局域网内手机访问电脑网站注意几点
查看>>